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Abstract -3 

A new statistical model is proposed for the geomagnetic secular variation over the pest SMa. 
z cs Unlike previous models, which have been based on the assumption of a Fisher distribution for -0 

m *  
C e A d  

d r n  
either VGP positions and/or field directions, the model makes use of statistical characteristics of Q a u 
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the present day geomagnetic field. The spatial power spectrum of the non-dipole field is con- 

a d  
sistent with a white source near the core-mantle boundary with Gaussian distribution. After a 
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suitable scaling, the spherical harmonic coefficients may be regarded as statistical samples from a 

single giant Gaussian process; this is our model of the non-dipole field. We can combine this 
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model with an arbitrary statistical description of the dipole and compute the probability density rii c, 

functions and cumulative distribution functions for declination and inclination that  would be v) ~g *r( 

observed at any site on the surface of the Earth. Global paleomagnetic data spanning the past -a 

5Ma are used to constrain the statistics of the dipole part of the field. A simple model is found to $ 

be consistent with the available data: (a) with two exceptions, each Gauss coefficient is indepen- I tc u 

dently normally distributed with zero mean and standard deviation for the non-dipole terms com- 4 2 - 
mensurate with a white source at the core surface; (b) the exceptions are the axial dipole, 010, and z u( L J 

axial quadrupole, 020, terms; the axial dipole distribution is bimodal and symmetric, resembling a 
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combination of two normal distributions with centers close to the present-day value, and its 

sign-reversed counterpart; (c) the standard deviations of the non-axial dipole terms, 01’ and h f  , 
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and of the magnitude of the axial dipole are all about 10% of the present-day gf component; (d) 

the axial quadrupole revers- sign with the axial dipole and has a mean magnitude of 6% of its 

mean. An advantage of specifying the model in terms of the spherical harmonic coefficients is 

that  i t  is a complete statistical description of the geomagnetic field, enabling us to test specific 

properties for a general description; both intensity and directional data distributions may be 

tested to see if they satisfy the expected model distributions. 

Introduction 

It ie by now generally accepted that the geomagnetic field is generated by some sort of 

dynamo process in the Earth’s core (see e.g., Moffatt, 1978). The field is by no means constant; 

changes on time scales from ten years to ten thousand years are classified as secular variations. 

Such fluctuations are consequences of the nonsteady nature of the field-producing mechanism 

within the core. More rapid variations, if they exist, cannot be detected because of screening due 

to mantle conductivity and interference from fluctuations of external origin. At the longer 

periods, it is difficult to dissociate mere secular variation from the actual reversal of the main 

field and it is quite possible the distinction is artificial. Unfortunately, the theory of the geo- 

dynamo is not currently in an advanced enough state to make more than the simplest predictions 

about the paleofield variation (e.g., Merrill and McElhinny, 1983, Chapter 9). When a system is 

as complex in space and time as the geomagnetic field, it is a natural and efficient strategy to call 

upon some kind of statistical characterization of it to uncover general properties, rather than to  

attempt a description of the behavior of the system at every instant and at  all points. Previous 

statistical descriptions of the paleomagnetic field have centered around the use of Fisher statistics 

(Fisher, 1953) and attempts to describe the observed variation in geomagnetic field dispersion 

(from paleomagnetic data) as a function of latitude (Creer e t  al. 1959; Creer 1962; Cox 1962, 

1970; Baag & Helsley 1974; McElhinny & Merrill 1975; Harrison 1980; McFadden & McElhinny 

1984). The most successful of these to date has been the so-called Model F of McFadden & 

McElhinny (1984), for which the average intensity of non-dipole components of the field at any 

latitude are assumed proportional to that of the dipole field, and the angular distribution of VGP 
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directions is assumed to exhibit axial symmetry. The model provides a good fit to  the variation 

in VGP angular dispersion as a function of latitude. The aim of this work is to provide a statisti- 

cal description of the field variation, by combining the properties of the present-day field and of 

paleomagnetic measurements. This statistical description does not just describe the angular 

dispersibn expected at any latitude, but provides complete statistical distributions expected for 

the secular variation at any site on the Earth’s surface. The resulting models are specified in 

terms of the spherical harmonic coefficients describing the geomagnetic field. 

The general plan of this paper is as follows. Two kinds of data describing the main geomag- 

netic field each supply components of the model and these are discussed; they are the modern 

data, with their excellent geographical coverage of the Earth, and the paleosecular variation data 

which span long time periods, but in general have poor global coverage. The modern data pro- 

vide a good estimate of the spatial power spectrum of the geomagnetic field, and enable us to 

show that the non-dipole part of the field is consistent with a white source near the core-mantle 

boundary. By suitable scaling of the spherical harmonic coefficients i t  is possible to regard them 

as statistical samples from a single giant Gaussian distribution. Supposing that a kind of unifor- 

mitarianism has held true, we assume that this giant Gaussian process haa always-been a good 

description for the non-dipole geomagnetic field. However, the modern data cannot help us with 

the statistical variation of the dipole, which involves much longer time spans; we must use paleo- 

data to study its behavior. Using a statistical framework it is possible to predict the cumulative 

distribution functions for quantities related to inclination and declination, which are the most 

accurately measured paleodata. The paleodata provide us with empirical cumulative distribution 

functions for the directional data from Hawaii and Iceland, where there are extensive paleosecular 

variation data from lava flows, and also for a global data set based on a compilation by Lee 

(1983). We construct a simple model with a number of free parameters, and adjust them to 

reconcile the model and the paleodata. 

i 
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1. Short-Term Data and Nondipole Field Statistics 

, 

Satellite and observatory measurements and historical records of the geomagnetic field fall 

into the category of short-term secular variation data. Observatory data rarely extend back more 

than 100 years, but provide reasonable simultaneous global coverage for that  time (although the 

distribution of sites is heavily biased towards the northern hemisphere and Europe, and per- 

manent observatories are necessarily restricted to land which is very unevenly distributed over 

the surface of the Earth ). Satellite measurements have been performed at irregular intervals 

since the Iaunch of Sputnik 3 in 1958 (see Langel, 1985 for a complete list), and the resulting data 

have varied in quality and extent of global coverage. Magsat (Langel et al., 1980, 1982) provided 

the first truly global survey of the vector components of the geomagnetic field. 

The method of analysis for these data was devised in 1838 by Gauss and involves represent- 

ing the geomagnetic field of internal origin as the gradient of a potential \I’ whose spatial varia- 

tion-is specified by an infinite sum of spherical harmonics. 

qlm and h,”’ are known as the Schmidt partially normalized Gauss coefficients and provide a com- 

plete description of the geomagnetic field. Appendix 1 gives the relationships between fully and 

partially normalized spherical harmonic representations and indicates how they are computed. In 

this work we make use of the GSFC980 spherical harmonic model of Langel et al. (1980), derived 

from Magsat data. 

Previous secular variation studies have been seriously hampered by an inability to handle 

the non-dipole components of the field in a quantitative manner. We propose a way out of the 

difficulty based upon a simple observation of the present-day field, that the non-dipole terms can 

be described by a zero-mean Gaussian process, and that it is plausible to assume this property 

has held for all time. 

Mauersberger (1956) first defined a kind of geomagnetic power spectrum based on the spheri- 

cal harmonic expansion of the geomagnetic field. Subsequently, other workers have used various 
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forms for the spectrum with different weighting as a function of degree. Here the form devised by 

Lowes (1974) is used. For each spherical harmonic of degree I ,  the power at radius r is Rl,  

I 
R~ (r)= (%)2@+2)(1ti) 2 { (glm)2 + I 

m =O r 

where glm and hlm are the Gauss coefficients in the Schmidt quasi-normalized spherical harmonic 

expansion. Equivalently, 
.. .. 

Rl=<Bl .Bl>  

where Bl is the magnetic field associated with degree 1 in the expansion and < > denote8 the 

average over the surface of the Earth. 

At the Earth's surface the spectrum drops exponentially with a slope indicating a white 

source approximately at the core's surface (see Figure 1). Lowes gives: 

RI 4.0X10' (4 .5) - ' (~ .~2' )~  

The deviations from this law for I > 8 are thought to represent power from crustal magnetica- 

tion. The spectrum has subsequently been refined, through the use of the more complete Mageat 

data set (Langel & Estes 1982). They estimate that the spectrum is consistent with a white source 

174 km below the seismic core-mantle boundary. 

If the spectrum of the geomagnetic field were precisely the same throughout geologic time 

then secular variation would just be reflected by a rearrangement within the individual elm and 

hlm while the power Rl remained constant. This implies a kind of 21 + l-dimensional Fisherian dis- 

tribution for the Gauss coefficients. However, exactly constant power in each spherical harmonic 

degree contradicts observation; continual small changes in RI are undoubtedly occurring. We 

therefore choose a description in which the power is also a random variable. The simplest model 

treats the individual spherical harmonic coefficients as normally distributed random variables. 

This simple model or a similar assumption has been used by other workers as a statistical descrip- 

tion of the secular variation (see e.g., Gubbins, 1983, Eckhardt, 1984) and has some very attrac- 

tive features. For example, the statistical prescription is invariant under reorientation of the 

coordinate axes. Many other specifications force a privileged status on one particular axis system, 
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something that is clearly undesirable. Another attractive feature is that  the model is amenable to 

testing, at least for the present day field. 

We use the Low- spectrum as a guide in construction of our statistical model. For the 

non-dipole terms we choose a model spectrum that is exactly flat at the surface of the core: 
.. 

= (c/a)2'a2p 1 2 2  

where E{ } is the expectation of the parameter in the brackets, c / 4  is the ratio of the core radius 

to that of the Earth (0.547) and a=27.7pT is a fitted parameter. In addition we assume that 

within each degree I ,  elrn and hl"' are independent identically distributed normal random variables 

of zero mean. If var(hlm) = var(glm) = a: then 

c/a)"a2 
(1  + 1)(21+ 1) 

u: = ( 

If we define scaled Gauss coefficients 

V I  SIrn q1m = 

film = vlhIrn 

where v:=(l+ 1)(21+ l ) ( a / ~ ) ~ I ,  then these coefficients (which completely characterize the non- 

dipole field for statistical purposes) are just independent samples of a single zero-mean Gausaian 

process with variance a2. Even though there is some evidence to indicate that the level at which 

the spectrum is white lies somewhat below the core mantle boundary we prefer to  characterize 

the spectrum in terms of the known physical constants c and a .  The reason for this is that we do 

not believe that the true level is very well constrained. In any case, the method used here in 

fitting the data yields an excellent fit to both the spectrum (see the straight line fit on Figure 1) 

and, as we will see, the Gaussian distributional form for the non-dipole field. Subsequently, we 

may want to allow the level where the spectrum appears white to vary. This may be done by 

changing the variance ma of the scaled Gaussian distribution. 
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The spherical harmonic field coefficients for 1980 (GSFC980) data for degree I = 2 through 

to I = 8 or higher may be used to test whether this Gaussian distribution is actually observed in 

the appropriately scaled coefficients. Figure 2 shows the cumulative distribution versus the 

theoretical normal curve. The agreement between the two curves is impressive. While there is no 

m*ans:of determining a unique statistical model from so few data, it  is possible to test whether a 

data sample is consistent with an assumed distribution. The Kolmogorov-Smirnov test (see e.g. 

Massey 1951, Kendall & Stuart, 1979) is a powerful means of determining probabilistic bounds 

within which samples from a particular theoretical distribution function should lie; one virtue of 

i t  is that  the test itself is independent of the underlying theoretical distribution function 

(although of course this must be known to compute the discrepancy statistic dN). The data  of 

Figure 2 are consistent with an underlying normal distribution for the non-dipole field; they exhi- 

bit a maximum discrepancy from the theoretical normal distribution of dN =.061, where N=77. 

However, if the three dipole terms associated with 1 = 1 are included, we find the K-S test for 

normality fails, demonstrating that the dipole terms do not follow the same pattern as the rest 

of the field. One might suspect that just the axial (i .e.,  g f  ) part of the dipole field is anomalous 

and we can test this by including the non-axial dipole terms ( 9 :  and h : )  in the tested distribu- 

tion. Then the population tests out as Gaussian at the same level as the non-dipole field. There- 

fore i t  appears that  according to this model, only the axial dipole term gf is anomalous. 

As a description of the non-dipole field, our model has simplicity and economy; only one 

number, the variance, needs to be determined empirically. It seems extremely unlikely that  such 

a simple description is an accident and pertains to today's field alone. Rather, it  is a reasonable 

working hypothesis that this model accurately provides the statistics of the non-dipole part of the 

paleofield as well. Now, for example, we can compute the statistics of the "noise" contributed to 

paleomagnetic measurements due to non-dipole sources. From the spherical harmonic representa- 

tion we can show 1) that the components of the non-dipole field at  the Earth's surface are also 

independent Gaussian variables with zero means, 2) that the variances of the horizontal com- 

ponents locally are equal, and 3) that they are different from that of the vertical component. 
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This is done in Appendix 2. The inequality of the vertical and horizontal variances makes it evi- 

dent that  the distribution of directions for the non-dipole part of the field is not Fisherian. This is 

entirely consistent with observation. 

2. .. Paleodata and the Dipole Field 

With paleomagnetic data it is never possible to obtain the detailed instantaneous descrip- 

tion of the magnetic field that we have for the present day. However, we can obtain information 

about much longer term variations, which is essential for a description of the dipole part of the 

field variation. The bulk of the data available consists of directional measurements of the 

paleomagnetic field. Measurements of the absolute paleointensity of the Earth’s magnetic field 

can be obtained from lava flows and baked archeomagnetic materials. Such measurements are 

exceedingly time consuming and therefore are far less numerous than directional measurements. 

Nevertheless, they are important if we are to be able to determine average values of field inten- 

sity as well as direction. The available data have been compiled by McElhinny & Senanayake 

(1982) for the past 50 thousand years and by McFadden & McElhinny (1982) for the past 5Ma. 

For directional data, there are two major sources of paleodata that span long time periods, lava 

flows and sedimentary sequences. 

Samples from lava flows typically produce very high quality data, but have the disadvantage 

that they only provide instantaneous recordings of the field properties at the time of acquisition 

of the remanence. This is not, however, an insurmountable problem for a statistical model of the 

geomagnetic field, since we are seeking a probability distribution rather than a deterministic 

model of magnetic field changes with time. Precise age control is not necessary, nor indeed is a 

continuous record of the field; all that is required is that we obtain a representative sample of the 

complete range of the secular variation at a given site. There are two places which could conceiv- 

ably offer suffcient data, namely Hawaii and Iceland. Both islands have experienced repeated vol- 

canic eruptions at relatively short time intervals over the past few million years. Extensive data 

sets are available from these sites already (for Hawaii see Doell and Cox, 1965; Doell, 1969; Doell, 

1972a,b,c; Doell and Dalrymple, 1973; for Iceland see Watkins, McDougall and Kristjansson, 
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1977; Kristjansson et ai., 1980). From the pool of declination and inclination data for each of 

these sites, we can obtain empirical cumulative distribution functions (cdfs) for declination and 

inclination at the latitude for each of these sites. Figure 3 shows these empirical functions, for 

Hawaii using the data of Doell & Cox (1965), Doell (1972a,b,c) and Doell & Dalrymple (1973), 

and foE Iceland using the data of Watkins, McDougall & Kristjansson (1977) and Kristjaneson et 

al. (1980). Data from lavaa more than 5Ma old were excluded as were those sites with Fisherian 

a96>200, in order to reduce contamination of the secular variation signal by tectonic movements 

and rock magnetic noise. The inclination data are all mapped onto the lower hemisphere in order 

to avoid the necessity of deciding whether they correspond to a normal or reversed field and the 

declinations are mapped into the range -9O0<ds90". This could be important for low latitude 

sites, where secular variation might result in an apparent field reversal. The changes of variable 

from declination D and inclination I to their modified forms d and i are performed as follows. 

i = III 

and 

d = D for -90°<Ds900 

d = D+180 for -180°<D5-90" 

d = 0-180 for 9Oo<D118O0 

The other data we have employed comes from the global compilation by Lee (1983) for the 

past 5Ma, which contains about 1100 individual site measurements (as well as many more aver- 

age results not used here), from a mixture of both sedimentary and igneous rocks. In the original 

selection of data for this compilation, data with agc>2O0 were excluded as were those with VGP 

latitudes of less than 45". This is because low VGP latitudes were considered more likely to 

correspond to anomalous field behavior (Lee, 1983) and the object of the study was to look at 

"normal" secular variation. There are comparatively few sites where there are as many data as 

for Hawaii and Iceland, so generally we have to combine data from a number of different sites and 

obtain cdfs that  are averages over a finite latitude band. This will also have the effect of averag- 

ing out non-zonal effects in the secular variation, which might otherwise be a problem even for 

very long records at a single site. Figure 4 shows the empirical cdfs for i ,  the absolute value of 
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the inclination, when the data are averaged in 8 latitude bands ranging in width from 2" to 9". 

The northern and southern hemispheres are assumed to be symmetric in their behavior so that  

data from equivalent latitudes in the two hemispheres have been combined to  yield a better esti- 

mate for the cdfs. This assumption of symmetry, means that any non-zero mean in the odd order 

ter'ms m the spherical harmonic expansion will not be detected. The data distribution is such 

that  very few of these bands contain sufficient data to provide an acceptable looking cdf. We 

would expect the cdf to look smooth, and many of these are jagged in shape, especially near the 

tails of the distributjon. Two of the bands (11-13" and 52-54") each only contain data from one 

or two locations and have only 51  and 62 field measurements respectively, and so can hardly be 

expected to sample the whole range of secular variation. In order to quantify the variation in the 

cdfs as a function of latitude we can look at the variation of the expectation and standard devia- 

tion of these distributions. These are computed by numerical integration of the empirical cdfs 

using a cubic spline quadrature scheme. In the upper part of Figure 5 are plotted the standard 

deviations, ~ ( d )  and w(i) ,  respectively for d (triangles) and i (squares) for each of the latitude 

bands, whose cdfs are given in Figure 4. In the lower part is plotted the bias, B{i}, in the absolute 

value of the inclination. This is defined as the expected value of the absolute value of the inclina- 

tion as computed from the empirical cdf minus the inclination that would be observed at that  

latitude if the field were due to an axial geocentric dipole. The axial dipole inclination is readily 

computed by 

= tan-'(2tanA) 

where A is the latitude at the location in question. (Here the average latitude for the band, 

weighted by the number of data at  each point, has been used.) Thus the bias is 

B{ i} = E{ i} - i,, 
Some idea of the reliability of these distribution parameter estimates may be obtained by using a 

bootstrap technique (of the type reviewed by Efron & Tibshirani, 1986) to estimate one standard 

error in the parameters. The bootstrap method supposes that the distributions of Figure 4 

represent the true underlying distribution of the secular variation data, and finds the standard 

error in the parameter estimate by repeated random resampling from this distribution, computing 
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the parameter estimate for each sample and then finding the sample standard deviation. The 

error bars for the parameters in Figure 5 are one standard error based on 500 bootstrap samples 

from each of the distributions shown in Figure 4. How good these bootstrap estimates of stan- 

dard error are will of course depend on how well the distribution functions of Figure 4 represent 

thslange of secular variation. 

The general picture that emerges for the parameters of the cdfs of Figure 4 is that  the incli- 

nation standard deviation rises from about 10" at the equator to  around 13" at around a latitude 

of 25" and then slowly decreases with increasing latitude. It should be noted that mapping incli- 

nation onto the lower hemisphere results in a modified inclination standard deviation at the equa- 

tor that  is expected to be one half that  of the true inclination. The declination standard devia- 

tion increases fairly steadily with latitude as does its uncertainty computed by the bootstrap. 

The solid lines connecting the data on this figure are cubic spline interpolation between data 

points and serve merely to guide the eye. The bias in the inclination is high near the equator 

(this is a consequence of mapping all the inclinations onto the lower hemisphere), but becomes 

consistently negative for latitudes higher than 7 or 8". The size of the bootstrap error bars sug- 

gests that is would be optimistic to try and interpret the detailed variations in bias with increas- 

ing latitude. 

Both the cdfs with the smallest number of points had somewhat smaller standard deviations 

in comparison with their nearest neighbors in latitude (marked by different symbols in Figure 5), 

and this aroused some suspicion that perhaps the samples were not large enough to contain the 

whole range of secular variation. To check this the data were combined into larger latitude 

bands. In Figure 6 cdfs for the absolute values of inclinations in latitude bands of 15" (for lati- 

tudes 0-45" and a band 25" wide for the highest latitudes) are plotted. These are much smoother 

than the cdfs obtained in Figure 4, and we can feel more secure that they represent an adequate 

sample for the variation. The price paid is that of resolution, the modified inclination standard 

deviations, u(i), computed for these distributions will be increased relative to those obtained 

before, because the expected value for the inclination distribution increases with latitude. The 
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standard deviations and bias for this grouping of the data are shown in Figure 7. They are simi- 

lar in form to those obtained in Figure 5, but without some of the high frequency variation seen 

there. This supports the idea that some of the features in Figure 5 are an artifact of the small 

number of points used to  compute the cdf in some latitude bands. 

The next question that arises is whether this global data set is consistent with those from 

Hawaii and Iceland. Comparison of the Hawaiian data with that from the corresponding latitude 

band shows them to be quite similar. The global inclination data has a bias of -3.2" compared 

with -4.5" for Hawaii, and the standard deviations are quite similar, 12.0" and 13.2" respectively. 

The same is not true for the Iceland cdf which has a bias of -8.8" and a standard deviation of 

11.8", compared with a bias of -5.4" and standard deviation of 7.4" for the global data. A look at 

the source of the Icelandic data reveals that there are far more low inclination values than would 

have been expected from the global data set. The cdf for the Icelandic data has risen to a value 

. of 0.2 already for inclinations of 60", while for the global data set this does not occur until past 

85". This may be a consequence of the fact that in the global data set sites at which the VGP 

latitude lies below 45" are excluded, while we have made no such requirement in our compilation. 

However, inspection of the original data reveals that for the Icelandic data about 10% of the data 

corresponds to VGP latitudes that are less than 45". If we assume that the lava flows are uni- 

formly distributed in time, and that VGP latitudes this low correspond to times when the field 

was in transition between polarities, then this implies that  the field spends 10% of its time in 

transition, or 0.32Ma out of the 3.2 Ma spanned by these two records. There are 15 reversals 

recorded in these lavas, thus if the extrusion rate was uniform, then on average the directional 

part of the magnetic field took about 20 thousand years to complete a reversal. This is 

significantly longer than the average time reversals are believed to take, Le . ,  between 1 and 

lothousand years (Merrill & McElhinny 1983, p164), although Clement & Kent, 1984, suggest 

that there is some evidence that reversals appear to take longer (by a factor of about two) at 

higher latitudes than near the equator. However, the Icelandic cdf could be heavily biased by 

non-uniform sampling of the field in time due to the erratic nature of the eruptions. 
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A complete description of the statistics of the magnetic field must include time scalea long 

enough for reversals, but we hope they will not be so long that the underlying processes must be 

regarded as non-stationary. We choose the past 5Ma as a representative sample for the secular 

variation. This spans about 20 polarity changes (see e.g., Merrill & McElhinny 1983, p.140), but 

is-not so long that we have to  take into account the effects of continental drift. The primary 

paleodata set that  we hope to  satisfy with our statistical model of the field consists of those data 

from the global data set compiled by Lee (1983) for which individual site measurements are avail- 

able. 

2.1. A Statistical Dbtribution for the Dipole Field 

From now on we shall assume that a giant Gaussian process of the type described in Section 

1 is an adequate description for the statistical variations in the non-dipole part of the field. The 

question now arises aa to what is an appropriate model for the dipole field. This is, in fact, the 

major question addressed’ in this work. It is not a trivial matter, and indeed, a large part of the 

science of paleomagnetism is devoted to exactly this question: how does the dipole of the 

geomagnetic field behave? As we have been doing all along, we will ignore questions of develop- 

ment with time and concentrate instead on the statistical distribution of the dipole field amongst 

its various possible states. 

Several approaches may be taken to modeling the dipole field variations. These will be dis- 

cussed in order of increasing complexity. In all of the following models (with one exception) it 

will be assumed that the dipole part of the field is statistically independent of the non-dipole 

part. This is clearly not true in general; the complex evolution of secular variation must be con- 

trolled by the geodynamo, in which the dipole and non-dipole variations are presumably inextri- 

cably linked. However, in developing a statistical model for the secular variation we will make 

use of paleomagnetic data, which provides a sporadic sampling of the process throughout time. 

The assumption of independence is then like proposing there exists no requirement for the qu% 

drupole term to always be small when the dipole term is large, or similar relationships between 

other spherical harmonic coefficients. Assuming that the data are not serially correlated 
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(certainly a safer assumption for lava flows than for sediments), the independence assumption 

should not be a serious problem. 

The simplest idea would be to treat the dipole as just another part of the giant Gaussian 

distribution. This is completely incompatible with what is known of field component distribu- 

tions from paleomagnetic data (Cox, 1970) in which the axial (Le.,  spin-axis-aligned) dipole has 

been dominant throughout geologic time (except during the brief periods of actual reversal). We 

therefore rule out this model. 

The simplest modification of an entirely isotropic dipole model is one that ascribes to the 

dipole variations, the same statistical behavior as the non-dipole field, but, during times not asso- 

ciated with reversal, superimposes a steady axial part to account for the ascendancy of the g.f 

term. This seems a reasonable approach given that the g and h 1' terms also appeared to satisfy 

the giant Gaussian model for the non-dipole part of the field. Thus the statistical distribution for 

the 910 term is envisioned as bimodal and symmetric, a combination of two normal distributions 

with centers at the present day value and its sign reversed counterpart. We take this opportunity 

to  introduce some new terminology specifying the magnitude of the zonal terms of the geomag- 

netic field. Let rP = lplol for 1=1,2, - - * ; then the statistical distribution for rf will be closely 

approximated by a Gaussian distribution centered on Is,!' I .  (The standard deviation computed 

from the present-day spectrum for the dipole parts of the field is about 20% of the present axial 

dipole magnitude; thus the area under the normal pdf that is truncated by taking the absolute 

value will be very small.) Then at times not associated with reversal the magnetic field com- 

ponents may be written as 

B,' = B, + f 

BO' = BO + c 
B,' = Bd 

where f = zyfsinh, e = ypcosh are the mean contributions at a site at  latitude h and, as we 

mentioned earlier, B,, Bo and B,, the  random components, are Gaussian, zero mean and indepen- 

dent with variances derived from the spectrum at the core. We can compute the probability 
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density functions (pdfs) for the commonly measured elements of the geomagnetic field by per- 

forming the necessary integrals. The techniques used for performing these calculations are laid 

out in Appendix 2 for a general form for the axial dipole distribution. Numerical integration of 

those pdfs yield cumulative distribution functions for comparison with the empirical cdfs 

obtained for the data. 

Figure 8 shows the resulting pdfs at a variety of latitudes for i and d,  the modified inclina- 

tion and declination. In these calculations we have simply set the mean of the magnitude of the 

axial dipole to today's value (7: = 30~2'). The distribution for i is skewed at mid and high lati- 

tudes and the standard deviation is large at low latitudes. Figure 9 (solid line) is a plot of the 

standard deviations and the bias as a function of latitude. (The bias is again the expected value 

of i minus the axial dipole inclination for that latitude.) Note that even though everything 

except the axial dipole part of the field had zero mean Gauss coefficients, this does not mean that 

i or even I, the inclination, will average to the axial dipole value. This is fortunate, since there 

exists a considerable body of paleomagnetic evidence in favor of biased inclinations (see e.g. Wil- 

son, 1971; Merrill & McElhinny, 1983 Chapter 6). Also plotted on Figure 9, as symbols, are the 

standard deviations and bias obtained for the global data compilation of Lee (1983), which were 

plotted in Figure 5. It is evident that this model leaves something to be desired. The standard 

deviations are all too high, although the variation with latitude has approximately the right 

shape. The bias in the modified inclination changes sign at too high a latitude (again partly 

reflecting the high standard deviation), and does not reach quite such low values in mid-latitudes 

as it  does for the data. 

How closely should we expect the data to follow the model? The error bars in Figure 9 are 

based on the assumption that the empirical distribution functions of Figure 4 represent the true 

distribution functions for the secular variation. The effects of the inadequacy of this assumption 

are hard to measure. Both the i and d data should have slightly higher standard deviations, cr(i) 

and o ( d ) ,  than predicted by the model because of the presence of errors in recording and measur- 

ing the field. For the data, a(;) will also be biased towards high values because inclinations from 
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a range of latitudes with slightly differing means are combined to provide a single empirical die- 

tribution for that  latitude band. The only mechanism by which the data standard deviation 

could be lower than that for the model is if there are insufficient data to sample the complete 

range of directions possible for the secular variation. As noted in the section on paleodata, the 

data of Figure 7 auggesta that this is only influencing one or two of the standard deviation points 

of Figure 5. These are again marked by asterisks in Figure 9. The net result of the above possible 

sources of bias is that, on the whole we should expect a(;) and a ( d )  for the model to lie slightly 

below those obtained for the data, except possibly for the data represented by the asterisks. 

From Figure 9 we must conclude that this simplest model does not satisfy the data. We 

look now for the least departure from the isotropic Gaussian model with non-zero axial dipole, 

that is consistent with the data. In order to do this it is worth restating the assumptions for this 

model and looking at whether it is possible to vary any of the basic parameters. The fundamen- 

tal assumption is that the spatial statistics of the present-day field are typical of the paleofield 

and may be used to determine the variance, a', for the scaled Gauss coefficients of the non-dipole 

part of the field and also the non-axial parts of the dipole field. The magnitude of the axial part 

of the dipole field is also taken to be Gaussian, with the same variance, and a mean value given 

by the present day value for pi'. There are three parameters that can be varied; 

1) a is computed from the present day field, and will depend on the level in the Earth at 

which the spectrum is assumed to be white, 

2) 7; the mean value for the axial dipole magnitude may not be the same as the present 

day value, and 

3) the variance for the dipole components of the field may be different from that for the 

non-dipole part. 

Since we have only directional data, varying a or 7," will have the same effect, an increase in 7," 

corresponding to a decrease in a. Figure 10 shows the effect of varying 7," on the model curves 

for B{i}, u(i) and o(d)  as a function of latitude. Here the parameters have been normalized so 

that 7:=1.0 corresponds to the present day field value of 3 0 ~ T .  In Figure 11 model curves are 
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plotted for various values of ul, the standard deviation in each of the Gauss coefficients for the 

dipole part of the field (Le., yf, g t  and h i ) .  u1 is normalized in units of v,", so that the giant 

Gaussian model whose pdfs are plotted in Figure 8 has u1 =0.207 as determined from the spectrum 

of Figure 1. It is readily seen that in order to make the model parameters a(;) and u ( d )  approxi- 

mate those for the data we must either increase 7," (or equivalently decrease a) or decrease crl. 

This also makes the zero crossing for B(i) closer to the right latitude, but makes the bias 

insufficiently negative at mid to high latitudes. There is little difference in the shapes of the 

curves obtained by varying these parameters, and the data is certainly not of good enough quality 

., 

to enable us to  pick between them. We must therefore look to other data to constrain these 

parameters. 

The variance of the scaled Gauss coefficients, and from these the variances in the field 

coefficients (see Section 1 and Appendix 2), are determined from the spectrum. Increasing the 

depth at which the spectrum appears white, results in an increase in a and therefore a worse fit to 

the data. There is no evidehce to suggest that the spectrum is white at a radius greater than the 

core-mantle boundary (in fact a number of authors have suggested i t  lies below there, e.g., Langel 

& Estes, 1982, find a level of 0.52a and a=36.7pT, which results in a substantial increase in the 

variance in the field components). A decrease in the value of a is therefore not consistent with 

the known properties of the present field. 

Another source of information is the available paleomagnetic intensity data. McFadden & 

McElhinny (1982) have compiled the available data for the past 5Ma (with VGP latitudes of 

greater than 45"), and performed a statistical analysis of their virtual dipole moments (VDMs). 

The VDM is the equivalent dipole moment which would have produced the measured intensity at 

the calculated paleolatitude (assuming a dipolar field) of the sample. Working with VDMs 

enables these authors to  combine data from sites at different latitudes. Unfortunately , there is 

no means of separating the component of the intensity from the non-axial dipole and non- 

dipole parts of the field. However, by taking random samples of the present day field, McElhinny 

& Senanayake (1982) concluded that the scatter in VDMs due to non-dipole components was 
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Gaussian with standard deviations ranging between 12.5 and 20.7% of the mean. McFadden & 

McElhinny (1982) find a model for the VDME consisting of nested distributions due to  paleointen- 

sity errors, variation in the non-dipole parts of the field and a true dipole moment distribution. 

Their estimate for the preferred value of the true dipole moment corresponds to  the peak (or 

mode) of the truncated Gaussian distribution used to model the true dipole moment, and is 

8.67 k0.65 x Am2 (to within the 95% confidence limit). This corresponds quite closely to the 

value of 9.07 x Am2, that  they obtained from the arithmetic mean of the observed VDMs. 

The dipole moment p is related to the Gauss coefficients of degree 1 by 

For the present day field p=7.91 x Am2. If the 0,' and h,' terms are indeed Gaussian with 

zero mean, then their combined contribution to the true dipole moment will be that due to their 

scatter about the mean. Assuming, as before, that the present day field is typical, we can com- 

pare today's dipole moment with McFadden & McElhinny's estimate of the true dipole moment 

to  see whether gf for the present day differs drastically from 7: for the past 5Ma. The difference 

of about 10% suggests that this is not the case. We might be justified in increasing 7: by lo%, 

but hardly any more. Since the discussion above suggests that a is if anything underestimated 

(which would counteract the increase in 7;) we choose to leave it unaltered. Figure 10 clearly 

shows that a 10% change in the value of 5: will not significantly improve the fit to  the data. An 

increase of about 50% would be required in order to reduce the standard deviations in i and d to 

about the right level. This is completely inconsistent with what is known from both the paleoin- 

tensity data and the constraints on the present day geomagnetic spectrum. 

The constraints on u1 are much less rigorous. These come entirely from the present day 

field values. Our Gaussian model for the field assumes that the scaled dipole coefficients yp, 0,' 

and h,' , are drawn from the same distribution as the  rest of the coefficients (except that yf has a 

non-zero mean). Support for this is based on the fact that g: and h,' do not alter the 

Kolmogorov-Smirnov test for normality, when they are included in the distribution. However, 
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this may simply be chance; there are only two data involved, and there is considerable evidence 

for believing that the dipole part of the field is special. Why else would i t  dominate the non- 

dipole part so much of the time? Figure 11 shows that a value for u1 of 0.1 would provide a 

much more acceptable fit to the standard deviation data, than al=0.207 obtained from the spec- 

trum. 'The present day values of g t  =O.O65Oqf and h, l=O. l878qf  are entirely coneistent with 

this, as both samples from the distribution lie within 2 standard deviations of the zero mean. 

Decreasing u1 still further (e.g. to 0.05, as shown in Figure 11) would enable us to constrain all 

the standard deviation data for the model to lie below those of the paleomagnetic data. However, 

this stretches the limits of what is plausible for the present day field, as it would require the 

present day sample of h,f to lie at 3.7640~ in the distribution. In a random sample from a Gaus- 

sian distribution this has a probability of less than one part in ten thousand of occurring, hardly 

what one would expect from a typical sample of the field. 

.. 

Reduction of the variance in the directional data, has been obtained at the expense of 

almost eliminating the bias in i. The zero crossing now occurs at about the right latitude, but the 

large negative values at mid-latitudes cannot be obtained from a dipole field with such low vari- 

ance. A different means of generating distributions with a significant bias in i is to include a 

zonal quadrupole term with a non-zero mean magnitude. 

The idea that the time averaged geomagnetic dipole does not correspond to that of a geocen- 

tric axial dipole (GAD) is not a new one: many paleomagnetists have proposed it (see e.g., Wil- 

son, 1971; Creer, Georgi & Lowrie, 1973; Wells, 1973; Georgi, 1974; Wilson & McElhinny, 1974; 

Merrill & McElhinny, 1977; Coupland & Van der Voo, 1980; Livermore, Vine & Smith, 1983, 

1984). Many of these authors have performed least squares fits for the spherical harmonic 

coefficients using paleopole data drawn from sites around the world. The resulting models may 

be rather strongly influenced by data distribution, whether non-zonal terms are included, and the 

degree to which the spherical harmonic expansion is carried. However, there appears to be a gen- 

eral consensus that for the past 5Ma the inclusion of a q: term offers a significant improvement 

over the GAD in fitting the available data. Livermore, Vine & Smith (1983) give a value of 
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y,O=.OIi;S:, in agreement with that obtained by Merrill & McElhinny (1977). They also suggest 

that a value of 'y:=.027: might be added for the last 5Ma, (although this could be due in part to  

data errors), and that hb may be significant in the average field for 0-5Ma. These results are 

substantially in agreement with a study of inclination anomalies by Lee & McElhinny (unpub- 

lished, but cited in Merrill & McElhinny (1983)), except that  they suggest that the 7; hae a rev- 

ersing and non-reversing part. Lee & McElhinny also looked at the average values of g l  and h l  

and found no evidence to indicate that they are significantly different from zero. They did not 

look at second order non-zonal terms in their analysis. 

.. 

Figure 12 shows the effect on the now familiar model parameters of varying y,O, the mean of 

the magnitude of gf. All of these models have r!=l .O and ol=O.l, as the evidence cited above 

suggests that these are reasonable values for these parameters. It is assumed also that it is of 

the same sign as and reverses sign with i:. This is consistent with the paleomagnetic evidence 

that the inclination bias is negative for both normal and reverse fields (see e.g., Merrill & 

McElhinny, 1983, p.185 figure 6.7). The best fit to the data of Lee (1983) is obtained with 31"".06 

and is shown in Figure 13. Since our data set is somewhat sparse for our goal of determining the 

actual pdfs for directions at any given latitude, we mapped all the southern hemisphere data onto 

the upper hemisphere. Our modeling will therefore not indicate the necessity for a significant 7: 

component, although i t  would be a simple matter to include such a term if it  were necessary, and 

we had the data  resolution to detect it. Similarly, we have made no attempt to include non-zonal 

components with non-zero mean in our model, because it is expected that by averaging data 

around latitude bands and over the 5Ma time interval non-zonal effects will average out. 

Figures 14 and 15 compare the cdfs for the preferred model (with 5:=1.0, cr l=O. l  and 

7:=.06) with the data distribution functions of Figure 6. Here, the solid lines represent the aver- 

age data cdfs over the latitude bands (0-15", 15-30", 30-45" and 45-70") and the finely dashed 

lines give the model cdfs for the boundaries of the latitude strips. These should represent bounds 



- 21 - 

between which the data lie, provided the data are sufficiently good and the model is a n  adequate 

description of the statistics. For the modified inclination (Figure 14) the average model expected 

from combining data at the given sites is computed and is given by the heavy dashed line. It 

agrees well with the empirical cdfs, except in the 0-15" strip for which either a larger quadrupole 

term or a lower dipole standard deviation would improve the fit somewhat. The declination data 

(Figure 15), as might be expected does somewhat less well. This is mostly because in both the 

15-30" and 45-70" strips the declinations are biased towards positive values. This could be due 

to  bias arising from insufficient averaging in longitude in the sites used. Right handedness of 

VGP positions was also noted by Wilson (1972) and others since then. Lee (1983) finds no evi- 

dence for believing the time averaged 91' and h,' terms significantly different from zero, when all 

the sources of error in the data are taken into account. 

3. Conclusiona 

In this study an attempt has been made to  find a simple statistical model for the Gauss 

coefficients to describe the secular variation of the geomagnetic field. Working with the Gauss 

coefficients, instead of the directional data enables us to  find a model that can simultaneously 

satisfy all the statistical requirements imposed by the vector field variation. Using the spatial 

spectrum of the present day field it is possible to derive a statistical model for the non-dipole part 

of the field. A comparison of the computed probability distribution functions for the modified 

inclination and declination data with paleomagnetic data spanning the past 5Ma indicates a 

number of features about the geomagnetic field statistics. (1) With the exception of the axial 

dipole and axial quadrupole terms each Gauss coefficient may be regarded as independently nor- 

mally distributed with zero mean and a standard deviation for the non-dipole terms consistent 

with a white source at the core surface. (2) The dipole part of the field cannot have the same sta- 

tistical distribution as the non-dipole pa'rt. The axial dipole has predominated and both the non- 

axial parts of the dipole and the magnitude of the axial part of the dipole have lower variance (by 

about a factor of 4) than if they belonged to the same giant Gaussian distribution as the non- 

dipole part  of the field. (3) The hypothesis based on the present day field that all the non-dipole 
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Gauss coefficients have eero mean is inconsistent with the paleodata. Although the inclination 

measurements are biased towards low values (relative to the GAD hypothesis) by the statistical 

variation in the Gauss coefficients, this bias alone is not sufficient to account for the inclination 

anomalies found in the paleodata; a quadrupole term with non-zero mean magnitude is required. 

A value of ?:= .067! for the past 5Ma provided a reasonably good fit to the paleodata; this agrees 

with typical values found by other workers (Livermore, Vine & Smith, 1983; Lee, 1983). 

The statistical distributions for the first 3 degree spherical harmonic Coefficients are plotted 

in Figure 16 for this model. Note the quite narrow distribution of gf about its peak normal and 

reversed values, and how the variance drops off rapidly with increasing degree. The g t  distribu- 

tion results from the sum of two normal distributions, centered at +.06:,". There is an implicit 

covariance between i f  and c,", in that they are required to always have the same sign. Table 1 

lists some parameters associated with this model. This simple model for the Gauss coefficients 

also enables us to compute the expected probability density functions for the conventional field 

directions D and 1 at any latitude (Figure 17). The model is a complete description of the 

geomagnetic field in the sense that it is capable of predicting the expected statistics of any 

measurable feature of the field. For example, we could straightforwardly compute distribution 

functions for intensity measurements anywhere on the Earth; there is no decoupling of intensity 

and directional data in the spherical harmonic representation, making the model eminently 

testable by any or all of the available data. 

Some remaining questions clearly require further work. This study is based on a very limited 

data set of combined sedimentary and lava flow measurements. Information from lava flows is 

usually more suitable for statistical studies of secular variation, because there is less smoothing 

inherent in the recording process. A better data set requires finding all the available lava flow 

data for which individual flow mean values have been published and using these to obtain the 

empirical cdfs for a data set. This would require an extensive literature search since (to our 

knowledge) there is no existing compilation of such data (the published pole lists generally con- 

tain means from several sites rather than flow means for a given study). It remains unclear what 
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criteria should be used in selecting these data; internal consistency as represented by ag6 is clearly 

required, but it seems desirable not to exclude transitional data corresponding to low VGP lati- 

tudes, since these transitional fields are after all part of the secular variation. However, if all 

these data  are included, we then encounter problems such as described in this paper with the Ice- 

landic -data which appear to have too many transitional flows. This probably reflects the combi- 

nation of sampling two erratic processes, namely the reversal of the magnetic field and the vol- 

canic eruptions that generate the flows. A larger data set can only improve the situation. 

The acquisition of a large global data set could provide us with more accurate cdfs for i and 

d. This study has shown that it is possible to satisfy the data with a model of the type discussed. 

A better data set could give better estimates for the parameters of the model, perhaps justifying 

setting up a formal inversion procedure. 
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Appendix 1: Spherical Harmonic Representation of the Geomagnetic Field 

The method of analysis for global geomagnetic data was devised in 1838 by Gauss and 

involves representing the geomagnetic field of internal origin as the gradient of a potential '4 

whose apatial variation is specified by an infinite sum of spherical harmonics. 

= I  
= a x  2 ~ ~ ) r + l ~ g l m c o s m + + ~ l m s i n m + ~ ~ l ~ c o s ~ ~  

I = l m = O  

a.e., 

where glm and hlm are known as the Schmidt partially normalised Gauss coefficiente, r ,  8 and + 
are the usual spherical coordinates, and PIm are the partially normalised Schmidt functions 

related to the associated Legendre polynomials, Plm, (Abramowitz & Stegun, 1965) by 

PIm = PI, for m=O 

The term "partial normalization" arises from the fact that within each degree I the average value 

of the square of PIm over the surface of the sphere has the same value for all values of m, Le .  

The Gauss coefficients are commonly used to describe the field, since they are sufficient to deter- 

mine the field model at any point on the Earth's surface. Successively higher degree and order 

terms correspond to components of the field with greater spatial variability; eg, gf is the 

coefficient of the axial dipole term, g! the axial quadrupole, etc. The zonal terms ( r n = O )  exhibit 

latitudinal spatial variation, and the non-zonal terms longitudinal variation. A more convenient 

mathematical representation of the field is in terms of the fully normalised complex spherical har- 

monics, YlyO,+), with complex coefficients blm 
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a 1+1 m * = a 5  i (-) 61 y;ye,44 
1=Om==-I r 

The fully normalised spherical harmonics r;) are related to the associated Legendre polynomials 

plm(cose) by 

.. 

and 

I n  1 

J d + J  ~ ( c o s ~ ) Y ; ? " ( ~ , ~ ) Y ; c R ( ~ , ~ )  = tg jmrn# 
0 -1 

Although the Schmidt normalization is commonly used in geomagnetism, we will use this fully 

normalised representation where it simplifies the mathematics (see Appendix 2). The fully nor- 

maliaed blm may be related to the Schmidt coefficients by 

m =O 

m <O 

The Gauss coefficients are usually determined up to some finite degree by performing a least 

squares fit to the available field data (Langel, 1985, provides a review of methods and models). 

Downward continuation of these models enables us to make estimates of what the field looks like 

on the core-mantle boundary. Spherical harmonic fits can be highly susceptible to poor data dis- 

tribution, and this problem is exacerbated by downward continuation of the models. Shure, 

Parker and Backus (1982) developed a technique for finding the smoothest model, in a certain 

specified sense, that  is consistent with the data. These models, known as harmonic spline models, 

to a large degree compensate for poor data distribution, by suppressing spatial variation in the 

field tha t  is not required by the data. 

Appendix 2: Computat ion of Variances and  Covariances for B,, Bo, and B,. 

As indicated in the previous section let us suppose that grm and h," are independent, normal 

random variables of zero mean for 1 1 2 .  Then 9," and hlm satisfy the following 
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E[g,mJ = E[Iqrn] = 0 

where a: is the variance of the normal distribution associated with degree 1. First let us derive 

the variance of the non dipole part of the field components B,, B,, B+. This is facilitated by 

using the fully normalised spherical harmonic representation for the potential. Making use of the 

relationships between the 6;" and the Schmidt coefficients, we find 

- 47r -- 
21+1 a: 

- 47r -- 
21+1 a: 

Thus E[b,m(brm)'] is the same regardless of whether or not m=O. Because E[glmhl?']=O for l = l '  

or m = m ' the only non-zero terms possibly remaining are of the form (m #O), 

E [ b ; Y b ,  - "1 *I 
when gl"' and h,"' appear in both complex numbers. 

2n 
21+1 

E [ b,m(b,-'")'] = ( - 1)"' --E [( s;")~ - (h;")'- 2ig,"hIm] 

= o  
We make use of the above expressions in deriving the field component variances and covariances. 

In addition i t  is useful to remember the Spherical Harmonic Addition Theorem (Jackson 1963, 

p.67): 

Letting F = i o  yields 
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a 
ae Differentiating this equation yields some further sums which are useful. - yields 

Some further manipulation and differentiation of the addition theorem yields 

We start with the radial field. From our non-dipole field model E[B,]=O. Thus 

= .0753a2 = (7.60)2 ( ~ 2 ' ) ~  

Similarly E[B,]=O 

var[Be] = 

- - 

- - 

- - 

and 

.0262a2 = (4.48)2( p T ) 2  

Symmetry arguments clearly dictate that E(B,]=O and var[B+] = var(B,]. 
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Since B,, B ,  and B+ are derived from sums of Gaussian random variables, they are clearly 

Gaussian also. Their covariances may be readily computed from 

0 

Clearly by symmetry E[B,B;]=O and similarly for E[B,B;] .  Thus the non-dipole field com- 

ponents B,, B ,  and B ,  are independent Gaussian variables with zero mean and standard devia- 

tions which are equal for the two horizontal components and larger for the radial component. 

Appendix 3: Computation of the Distribution Functions for Declination and Inclina- 

tion 

Let us suppose that the pdf for the axial part of the dipole field, f D  may be written aa a sum 

of Gaussian kernel functions, Gj(z), centered at positions Xi 

where 

and 

c j  = exp{ai} L O 

This is a conventional technique of representing empirically an unknown pdf (see e.g., Silverman, 

1986); f D ( z )  is known as a kernel estimator. We will assume that Xi, the locations of the ker- 

nels, and hi, their widths, are chosen a priori and h, = h = constant. Then the axial dipole 

contribution to the field components B, and B,, at any given site is distributed as 
t 
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where 

X I  = kix and ki = cosA for Be 

Xj' = kiXj and ki = sinX for B, 

A 'is the latitude at the site in question. 

In ita simplest form (as is used in this work) f D ( x )  is just the sum of two Gaussian distribu- 

tions, one centered on the value of the present day normal field, and the other on the reverie field 

(see the distribution function for gf in Figure 16). Then if, as discussed in Section 1, the non- 

dipole part of the field has a Gaussian distribution, f N D ( y ) ,  that  is independent of the dipole part  

of the field, the cumulative distribution function for the field components B, and B ,  may be com- 

puted from 

where 8 is the region satisfying z'+ y I p, and f ND includes the g 1' and h 1' random variation. 

Then f(P) the probability density function for the field component will be 

and will again be a sum of Gaussians 

c j h  
f(P) = c 

j (a: + k?h2)' 

Note that this is easily modified to include a non-zero mean for the g: (and or any other higher 

order) term in the non-dipole distribution function. 

Now to compute the distribution function for tan1 we need first to find that for 

H = (8: + 8;)". Letting 

Bo = I C O S ~  B ,  = [sine 

and 



we have 

.. 
, 
l 

or for the pdf for H 

The pdf for t = tan1 is given by 

m 

ftandt) = Jldlfr(tl)f,(l) 
0 

I 

where f r(  t l )  is the pdf for the radial component of the field at R = HtanI, Le., 

and Zj = krXj = 2Xjsinh 

Some algebraic manipulation yields 

with 

sin2e + egcos28 + e f t 2  = a ( e )  = fg 
efs 

gcose yj + ftz, 

f g  
P = P(e) = 

gy; t fZ," 
T =  

f Y  

2 e = 2a+ 

f = 2 ( a l  t k l h 2 )  
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g = 2(u,2+ k:h2) 

h 2  
Gu,(u , '+  k:h2)' 

C =  

The .. 0 integral can be computed rapidly using the trapezoidal rule. The inclination pdf is then 

fr(i) = sec'i f t,,r(t) 

Similarly the declination distribution may be computed from 

and 

with 

case yj 
v = v(0) = 

2(u; + k t h 2 )  

erfc(z) is the complete error function (Abramowitz & Stegun, 1965, p.299) 

The pdfs for I and D are readily converted to those for the modified field directions i and d. 

Comparison with the data requires cdfs for d and i. These are obtained by using a cubic spline 

quadrature scheme to  integrate the numerical values of the pdfs obtained on a uniform grid for d 
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and i .  Obtaining the cdfs also provides some reassurance about the accuracy of the above 

results, since we can check that they integrate to unity. 
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1 

Table 1: Parameters describing preferred secular variation model. 

Standard deviation in spherical harmonic coefficients (pT) 

Q1 Qa u a  Q4 Q I  
(C)ar,a 

a 3.00 2.14 0.86 0.37 (1+11(2,+1) 

Mean values for the spherical harmonic coefficients (pT) 

30.0 1.8 0.0 0.0 0.0 
910 910 980 g: 9r0 

Standard deviation in surface field components (pT) 

5.39 5.39 9.68 
=e g+ u r  

Standard deviation in non-dipole part of field components (pT) 

Qb a+,. urn 4 

4.40 4.40 7.6 
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Figure 1: The geomagnetic spectrum at the Earth's surface, 
computed from GSFC980 magnetic field model. The fitted straight 
line is for a white source at the surface of the core for terms from 1=2 
to a. 



7.0 

.8 

.6 

. 4  

.2 

-80 -40 0 40 80 
Ordered scaled d a t a  

Figure 2: Empirical cdf for the GSFC980 Gauss coefficients scaled 
in the manner described in the text. The dashed line shows the 
theoretical curve expected if the scaled coefficients correspond to a 
Gaussian distribution. 
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Figure 3: Empirical cumulative distribution functions for modified 
declination ( d )  and inclination ( i )  data from Hawaii and Iceland. 
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Figure 4: Empirical cdfs for modified inclination, i ,  using the 
available individual site data from Lee (1983). All the data within 
each indicated latitude band are combined to generate the cdf. 
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Figure 5: Bias in the modified inclination for the data grouped as in 
Figure 4 (lower part of figure). Data from the two smallest data 
groups are marked by a star to indicate their lesser reliability. Upper 
part shows the standard deviation in d (triangles) and 'i (squares) for 
the same data. Error bars are one standard error computed using the 
bootstrap technique described in the text. 
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Figure 6: Empirical cdfs for i from individual site data of Lee 
(1983), with data grouped into wider latitude bands than in Figure 4. 
Note the smoother cdfs obtained. 
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Figure 7: Bias for the modified inclination and standard deviations 
for d and i for the data as grouped in Figure 6. 
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Figure 8: Probability density functions for d and i at a variety of 
latitudes, assuming the giant Gaussian model for the secular 
variation, with a mean axial dipole corresponding to the present day 
value. 
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Figure 9: Bias and standard deviations as a function of latitude for 
i and d for the model (solid line) whose pdfs are shown in Figure 8 
and the data of Figure 4 (symbols). 
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Figure 10: Effect of varying 7," on the bias and standard deviation 
for the resulting i and d distributions. 
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Figure 11: Effect of varying crl, the dipole standard deviation, on 
the bias and standard deviation for i and d .  
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Figure 12: Bias and standard deviation curves resulting for various 
values of 7,". 
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Figure 13: Bias and standard deviations as a function of latitude for 
the preferred model described in the text. Parameters for the data 
compiled by Lee (1983) are again shown a8 open symbols. 
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Figure 14: Cdfs for i data of Lee (1983) grouped as in Figure 6 
(solid line) compared with the predictions of the preferred model. 
Long dashed lines indicate the expected average cdf from combining 
data at the given sites. The finely dashed lines indicate the region 
within which the observed cdf should lie. 
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Figure 15: Cdfs for d data of Lee (1983) grouped as in Figure 6 
(solid line) compared with the predictions of the preferred model. 
The finely dashed lines indicate the region within which the observed 
cdf should lie. 
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Figure 16: Statistical distribution for the first 3 degree spherical 
harmonic coefficients for the model. Parameters for these 
distributions are given in Table 1. 
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Figure 17: Probability distribution functions for declination, D , and 
inclination, I at a variety of latitudes for the preferred model. 


